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where

SA = 666*/«*)

!(V - 2&**)]n* (53)

2* + 4de6* -
Midhi* - 2666*) ]w2

So = p.»(fcu*M1 - <*„*

The Dn's are the Fourier coefficients of the expansion of the
right-hand side of Eq. (47) which will be denoted by K.
Hence, (54)

In the same manner, the third and subsequent systems of
equations may be solved. The boundary conditions depend
on the solution of the previous system.

After a sufficient number of systems have been solved, the
solution to the complete problem must be reconstituted by
summing the solutions of the individual systems and returning
to the original parameters by means of Eqs. (8, 9, 13, and 14).

Discussion

A perturbation method of solution has been applied to
laminated anisotropic shells. By this scheme the effect of
general anisotropy was reduced to orthotropy such that the
solution to an anisotropic shell problem consists of a series
of orthotropic shell solutions. The method was demon-

strated for the uniform pressurization of laminated cylindrical
shells. Although the method of solution is straightforward,
the amount of algebra involved is quite extensive. There-
fore, it is suggested that this method be used on shell struc-
tures where the general anisotropy is slight. Then a good
approximate solution may be obtained by solving a small
number of systems of equations.

By letting the radius of curvature a tend to infinity through-
out the equations for cylindrical shells, a system of laminated
anisotropic plate equations is obtained. Techniques em-
ployed previously for cylindrical shells are again applicable
for laminated anisotropic plates.
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A Transient Axisymmetric Thermoelastic Problem for the
Hollow Sphere

WILLIAM E. WARREN*
Sandia Laboratory, Albuquerque, N. Mex.

The linear uncoupled quasi-static theory of thermoelasticity has been applied to the elastic
hollow sphere having a prescribed axisymmetric transient heat input on the outside surface,
and a prescribed axisymmetric transient temperature distribution on the inside surface.
Series expressions for the temperature, stress, and displacement fields are obtained in terms
of orthogonal functions. As a particular example of the analysis, the stresses due to aero-
dynamic heating of a hypersonic hollow sphere are investigated in detail, and some repre-
sentative transient and steady-state stress distributions are presented in graphical and tabular
form.

Introduction

THE thermoelastic problem for a sphere has been the
object of numerous investigations in the past, and bib-

liographies of this work may be found in the references.1"3
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Of particular interest to the present investigation is the work
of Trostel,4 who obtains quite general solutions for general
transient axisymmetric boundary conditions on the hollow
sphere. The corresponding steady-state problem has been
solved by McDowell and Sternberg,5 and a solution for the
transient thermal stresses in a solid sphere has been obtained
by Melan.6 The purpose of the present investigation is to
present a detailed analysis of the transient thermal stresses
in a hollow sphere subject to a prescribed axisymmetric
transient heat input on the outside surface, and to a pre-
scribed axisymmetric transient temperature distribution on
the inside surface. The inner and outer surfaces are assumed
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stress-free. These thermal boundary conditions may closely
approximate conditions encountered during aerodynamic
heating.

The analysis assumes an isotropic, homogeneous material
and uses the linear uncoupled quasi-static theory of thermo-
elasticity. A general solution for the stress and displacement
fields is obtained for the transient thermal boundary condi-
tions as just prescribed in terms of orthogonal functions.

A particular example corresponding to aerodynamic heat-
ing of a hypersonic vehicle with a hemispherical or spherical
capped nose is considered in detail, and numerical values for
the maximum stresses are presented in tabular and graphical
form. A second-order approximation for thin sections is also
obtained for this particular example and compared with the
exact results. It is found that, for thick sections where the
ratio of inner radius to outer radius k is less than 0.5, the
maximum stresses occur at points 90° from the nose, or stag-
nation point. For thinner sections with a ratio greater than
0.6, the maximum stresses occur at the nose. The particular
ratio at which this change occurs is identical for the maximum
tensile and compressive stresses and depends upon Poisson's
ratio. For a Poisson's ratio of 0.3, the position of the maxi-
mum stress shifts at a value of k — 0.544. Thus, in rela-
tively thick sections, the stresses increase, moving away
from the nose, and failure will probably occur at some point
remote from the nose. In thin sections the stresses decrease,
moving away from the nose, and failure will probably occur
at the nose. At all times, as expected, the maximum tensile
stress occurs at the inside radius, and the maximum com-
pressive stress occurs at the outside radius. For the par-
ticular time-dependent inputs considered, a steady state is
reached which permits verification of the convergence of
the transient series results. The solution, however, is di-
rectly applicable to the more interesting cases in which the
heat input does not take on a steady-state value.

Basic Equations

In rectangular coordinates #/ and time £', the Cartesian
tensor form of the field equations associated with the linear
uncoupled quasi-static theory of thermoelasticity aref

- »»'.« = 2(1 +
2" _ , s 2(1

1 - 2? 1 - 2v ,]
(D

In Eqs. (1), T is the temperature variation relative to some
ambient temperature; . v/ and ay represent Cartesian com-
ponents of displacement and stress, respectively; 5^ is the
Kronecker delta; and K,a,v,G are material constants rep-
resenting thermal diffusivity, coefficient of thermal expansion,
Poisson's ratio, and shear modulus, respectively.

Introducing spherical coordinates p,0,$, as given by the
transformation

Xi = p sin0 cos</> x«f = p sin0 \
xj = P cos0 (2)

Eqs. (1) are to be solved in the region lying between the
two radii p = Ri and p = R0,Ri<RQ, and subject to the
following boundary conditions: a) prescribed heat input
Q(6,tf) on outer radius p = RQ; b) prescribed temperature
Ti(0,t') on inner radius p = Ri] c) initial temperature
jf(p,0,0) = 0; and d) traction free surfaces at p = #,-, p = RQ.

With the introduction of the dimensionless ratios

Vi = " RQ

RQ

Eqs. (1) become
Ttii = b!T/d* (3)

(1 - 2?K** + »*,*.- = 2(1 + ?)a!T,t- (4)

2(1 + v)= 0 [vtt,
(5)

with the associated transformed boundary conditions

Ti(0,t) = h(0,t)

0*rr]r = 1,* = 0"r0]r = 1,/b ~ OY0 = 0

(6b)
(6c)
(6d)

where K is the material thermal conductivity.
The analysis proceeds with a solution of the heat equation

(3) subject to (6a~6c), which gives the temperature dis-
tribution in the hollow sphere. With the temperature dis-
tribution known, a solution to the displacement equation (4)
is obtained as the sum of a particular integral plus the general
solution to the homogeneous form of (4) as given by the
potentials of Boussinesq and Papkovich. The Boussinesq-
Papkovich potentials are evaluated with the aid of (5) from
the boundary condition (6d). In all that follows, the axi-
symmetric nature of the problem will be implicit.

Solution of the Heat Equation

The heat equation is solved by considering first the prob-
lem of time-independent boundary conditions and then
applying DuhameFs theorem to obtain the solution for the
more general time-dependent boundary conditions. In
spherical polar coordinates, the heat equation (3) becomes

2 .
r2 br br / r2 sin0

* A ( - «VT\ = VL
in0 be \ 50 / bt (7)

with time-independent boundary conditions and initial
condition

t> 0

t > 0

(8)

dr J r _ i

T]r - * = /^(0)

r(r,0)]t = 0 = 0
Writing T as the sum of a steady-state solution Ts and a tran-
sient solution Tt, a separation of variables gives T8 and Tt in
the form

T. = n + Bnr-«-i]Pn(u)

[An,ajn(ar) + Bn)ann(ar)]

(9)

-^Pn(u)

(10)
In Eqs. (9) and (10), u = cos0; Pn(u) is the Legendre

polynomial of order n and argument u, An, Bn, Ant<x, Bn,a, a
are constants to be determined from the boundary condi-
tions; and jn(ar), nn(ar) are spherical Bessel functions! of
the first and second kind, respectively, of order n and argu-
ment ar.

Expanding q(u) and h(u) from (8) in a series of the or-
thogonal Legendre polynomials in the form

q(u) = E qnPn(u)
w = 0

t For a derivation of Eqs. (1), see, e.g., Ref. 1, Chap. 3.

h(u) = E hnPn(u) (11)
n=0

gives the steady-state temperature in the hollow sphere as

t For properties of these functions, see Ref. 9. Part II, p. 1573
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T. = X

(n
[n + (n + I)fc2»«] J *

(12)
To satisfy the homogeneous boundary conditions imposed

on Tt) introduce a linear combination ofjn(ar), nn(ar) in the
form

Un(ar) = jn(ak) nn(ar) - nn(ak) jn(ar) (13)

and determine the admissible a's from the condition

U*'(a) = 0 (14)

The Un(ar) defined by (13) and subject to (14) satisfy the
required homogeneous boundary conditions imposed on
Tt at r = k 'and r = 1. Designating the successive zeros of
Un'(a) by aitnj Tt becomes

(15)
n=0 i = l

It may be shown from the defining differential equation and
the given boundary conditions that the 17» («»,»?•) form an
orthogonal set over i in the interval k < r < 1 such that

f
Jkk

where

and

Un(ai<nr) = J (16)

(n
2

n

— nn(aitnk) jn-i (18)

Substituting (12) and (15) into the initial condition (8) and
making use of the orthogonality relationship (16) gives

/ \1
(a«,w)

J
(19)

where use has been made of the following identities readily
established from (14):

Solution of the Displacement Equation

With the temperature distribution in the hollow sphere
determined, as in (23), the solution of the displacement
equation (4) may be written as the sum of a particular
integral v* and a general solution to the associated homog-
eneous problem corresponding to a uniform temperature
distribution throughout the body which will be designated
v**. It may be readily verified that a particular integral is
obtained by taking

2£v* = V$ (25)
and

V2$ = [(i + „)/(! - v)]2G«T (26)

To formalize the solution, set

where (23) gives /»(r,£) in the form

The particular solution to (26) to be used here is

* = X; Hn(r,() Pn(u)

where

(28)

(29)

2n+ 1 X

(30)

The spherical components of displacement and stress arising
from the particular integral and the temperature terms in (5)
may be obtained directly by a transformation from the
Cartesian form with the aid of (26) . They are

2GV = E Hn'(r,t) Pn(u)

2Gve* = - u Pn'(u)

(n

(20)

(21)
Equations (12) and (15), with (19), give the temperature

in the hollow sphere as

• { -
(n
[n + (n + l)/b2-+1

(22)
For the more general case where hn and qn are functions of
time, that is hn = hn(t), qn = qn(f), DuhameFs theorem § gives

n = 0 i

where

(23)

(24)
§ Application of DuhameFs theorem is described in Ref. 7,

pp. 30-32.

[Hn''(r,t) - fn(r,t

(31)

where Hn'(r,t) = (d/c)r)77n(r,0,and w = sin#.
Because of the axisymmetric nature of the problem, the

shear stresses (rr<j> and o^ are identically zero and subse-
quently will be ignored.

It is well known that for the axisymmetric problems of
elasticity the general solution to the homogeneous form of
the displacement equation (4) may be obtained in terms of
two Boussinesq-Papkovich potentials given, in Cartesian
tensor form, by

(32)
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where xs is the axis of symmetry and <t> and \l/ are harmonic
sealer functions. Expressions for displacements and stresses
in spherical coordinates corresponding to (32), suitable for
the present problem, have been obtained by Sternberg,
Eubanks, and Sadowsky,8 and only the results will be pre-
sented here. Accordingly, the displacement and stress fields
arising from (32) are

2Gvr** = -
(n+1)

( n + l ) ( n - + 4 - 4 i Q
— — — — — — — — — — — — — — — —

Mn = /»(1,0 - Hn"(l,t) Nn = #«'(1,0 - J

and use has been made of the readily established fact that
fn(k,t) - Hn"(k,t) = 0, Hn(k,t) = 0, and Hn'(k,t) = 0.
Equations (35) constitute a consistent set for determining
all Cn and Dnj with the exception of Co, C_i, D_i, which cor-
respond to a rigid-body motion of the hollow sphere. For
n = 1, (35) gives four equations in the three variables Ci,
D_3, DO, which are consistent by virtue of the fact that
Mi/2 = NI. The Cn and Dn are presented as follows:

(n - l)AnC-w-i =

(n
n

(n + 2)AnC« = &2»

(1 - **•+«) [nft.^ - (n + 1)W} +
[n^n+2 - (n + 1) on] -
i + |8.) } n > 2 (36)
- A;2--1) X

(n + l)(n + 2) Cnr-»-3 - (n + 1) X
[(n + l)(n - 2) - 2z>] D_n_2r« +

n[n(n + 3) -

- E s
- (n - 3

***

E
— oo

(n -

2n -
2 + 2?) £>„-! Pn'(u) (33)

In (33) use has been made of the relationship Pn(u) =
P_n_i(^). The total stress and displacement fields are then
given by the sum of (31) and (33). The traction free bound-
ary condition (6d) takes on the form

OVr]r=l f * = [oVr* + 0Vr**]r-l,* ='0

0V0]r-l,fc = [(T,tf* + 0-r0**]r=l,A = 0

(34)

Substitution of (31) and (33) into the boundary condition
(34) gives the following set of simultaneous equations for
determining the Cn and Dn:

n(n -
(n

n(n -
(n +

(n
D_n

(n + l)
^-* +

(n + 2) Cn -
n/3n+2 Dn-i = Mn n > 0

0 n > 0

-(n -

(n + 2) Cn + 5n+1
6n

(n + 2) k-**-*Cn

Nn

n_! = 0 n > 1
(35)

in which

dn == n2 - 2 + (n + l)(n - 2) - 2v

/5W(1 - &2)(on + /3n+2) -
(n + 1)/3B]} n > 0 (37)

n_2 = Mn{n(l - kzn+l)(dn + ftn-2) -
(2n+l)«n(l -A;2-1)} +

nATn{(2n+l)/5n+2(l - /b2-1) -
(n +!)(!- k*"+1)(&n + ]Sn+2) } n > 0 (38)

- /b2) +

An =

/b2(l -
(n + l)A

(2n

- (n

n+1 - (n

- (n

n > 1 (39)
- (n

X

(40)

The evaluation of the Cn and Z)n completes the determination
of the stress and displacement fields in the hollow sphere.
To carry out the preceding evaluations, the following terms
are necessary along with r,-,»(0 and fn(r,t) as given by (24)
and (28):

^n(r,0 =
- v) (2n + 1) Y

(41)

. - ?/ (2n+ 1) Y «i>n
2r

[ j _ _ j [ / |
HT K ~i~ (Jl ~T~

(n+ l)(2n+ l)at-

X

(42)

1 + v\ 2Ga
1 - ^ (2n +

(n
(2n (ra + 2)al>[7n(ai,Br-)

/I + A 2G^«
Vl - y/ (2n + 1+ D T

X

[n(2n ,-,.) - n(n -

(2n + 1) T

(n + 2)*» +

[n - I)*;-"-1

(43)

(44)

(45)
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Example of Aerodynamic Heating
As an application of the preceding analyses, the thermal

stresses in a hollow sphere due to aerodynamic heating at
hypersonic velocity will be determined. Because the rate
of heat transfer to the body in the turbulent region of flow
is not well defined, the analysis is assumed applicable only in
the forward portion of the sphere where the flow is laminar.
The analysis thus provides an approximate solution for an
unyawed hemisphere or an unyawed cone capped by a spheri-
cal segment. Lees10 has obtained analytic expressions for
the local heat-transfer rates for an unyawed hemisphere at
hypersonic flight speeds, and his results are closely approxi-
mated over the forward half of the sphere by

Q(i,u) = QoCOtrPofa) + (1 - 7)ft(")] (46)
where Q(t,u) is the local heat-transfer rate, Qo(t) is the nose
stagnation point heat-transfer rate, and 7 is a parameter
determined by flight speed (0.39 < 7 < 0.52). The form
of the heat input (46) cannot be assumed physically valid
over the region Tr/2 < 6 < IT. The theoretical results of
Lees have been verified experimentally by Bloxsom and
Rhodes,11 and theoretical and experimental values of the
stagnation-point heat-transfer rates Qoff) have been obtained
by Ferri and Zakhay.12 Table 1 gives values of 7 for various
Mach numbers, as approximated from the curves of Lees,10

so as to maintain the same total heat-transfer rate into the
front portion of the sphere.

If the temperature on the inside surface is assumed uni-
form, the steady-state effect is to raise the temperature of the
entire hollow sphere by this uniform amount, which creates
no stress field. The only contribution, then, to the stress
field for a uniform temperature change on the inside surface
will be due to transient effects. It will be assumed here
that temperature changes on the inside surface are suffi-
ciently slow so that the stress field is independent of this

Table 1 Values of y

Mach number 10

0.52 0.46 0.42 0.40 0.39

where

( [9(1
\

X

(r - k) )
* 2(r — k) }

(51)

[3
- k) - cosa<f2(r - K) } ( '

= 0,2 (53)r,-,w(0 =

and ai(0, a*,2 are nonzero roots of the transcendental equa-
tions :

ditQ = tan di, 0(1 — k)
9(1 -

(54)

AQ]

7 N /- *> \

-9oji,2
2/b2 + 27(1 -

tana.-,2(l - K) (55)

Table 2 gives the first six ai>0, «t-,2 to four decimal places
for three values of k.

The stress field arising from the boundary heat input
q$(t) is independent of the argument u and may be obtained
from (31) and (33) with the use of C0, Z>-8, /oM, #0(r,i),
Hv'(r,t), [Hv"(r,t) — fo(r,t)], and MQ. Evaluating these
terms from Eqs. (28, 37, 38, and 41-44) with the aid of
(24, 40, 49, and 53) gives

— k) — aitQr Gosai>Q(r — k)} (

\
1)7(1 - - k) - .. n(r — Jc}}i,Q\t /v) J

temperature, and the temperature will then be taken, with
no loss in generality, as zero. In applications where the in-
side surface temperature is known to be nonuniform or chang-
ing rapidly, a solution for the stress field with this known
temperature distribution on the inside surface and zero heat
input on the outside surface may be obtained and super-
imposed onto the stress fields presently to be obtained.

The boundary conditions (6a) and (6b) give

- k) - sin2aii0(l - k)]

CTrB, = 0 (56)

where the subscript zero designates stresses from qQ(t). The
stresses (56) are in agreement with the results obtained by
Boley and Weiner [Ref. 1, p. 301, Eq. (9.14.4)] for the sym-
metric thermal stresses in a hollow sphere.

The stress field arising from g2(0 is obtained from (31) and
(33) in the form

q(u,t) =
h(u,t) = 0

and the nonzero qn,hn of (11) are

K 32(0
-7)

(47)

(48)

(49)

12
-

4(5-

Table 2 Values of the first six at ,o, on ,2 for three values of k

Evaluating (23) and (24) with (49) gives the temperature
distribution:

T = Kr T x
g< to2sincgi t0(l - k) sing<t0(r — k)\ p

[(1 - &K,o2 - sin2^,o(l - *)] f °

(«) (50)

k

0:1,0
0:2,0
«3,0

0:4,0

' 0:&,0

«i,ft

0:i,2

0:2,2

0:3,2

0:4,2

0:5,2

«6,2

0.25

1.1263
6.0653
10.3435
14.5694
18.7786
22.9804

3.3579
7.5235
11.3753
15.3463
19.3960
23.4909

0.5

2.3311
9.2084
15.5798
21.8999
28.2034
34.4996

3.7176
9.8165
15.9555
22.1705
28.4146
34.6726

0.75

5.5730
18.6351
31.2881
43.8912
56.4779
69.0571

6.1711
18.8461
31.4152
43.9820
56.5485
69.1150
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4.0

3.5 i1 ————
\
\
\ — - - k 5 I/4

——— k « I/2
—• — k = 3/4

0.2h 0.4h 0.6h 0.8h h
DISTANCE THROUGH THICKNESS h MEASURED

FROM INSIDE SURFACE

Fig. 1 Steady-state stress distribution through thickness
h for 0 = 0, v = 0.3, 7 = 0.4.

-CL, + - ft + (7 + 2v)r2Z)_4 +

-1)

2 (3 -

3ZUr2[7(2 + v)u> - (7 + v)\

9^.2 _ 1\t>t* — ly

A - 5)

3D_4r2[(7 (57)

where the subscript 2 represents stresses arising from q2(t).
The stresses in (57) may be explicitly represented with the
use of (28 and 36-45) but will not be presented here.

In order to obtain numerical results, the stagnation point
heat input QQ(t) was assumed to increase linearly from zero
to a maximum Qo and remain constant at Q0 thereafter.
While being representative of a particular physical situation
of interest, this form of heat input also has the advantage of
producing a steady-state solution from which convergence
of the series solution may be investigated. The steady-
state solution may be obtained by using the temperature dis-
tribution (12) rather than (23) in the solution of the displace-
ment equation with the nonzero qn and hn still given by (49).

o

.0°
ol
e>

1.25

1.00

0.75

0.5

0.25

-0.25

-0.50

90°

Fig. 2 Steady-state 6"00 and 5<f>(f> at r = 1 and r = k for k
i, f and v = 0.3, 7 = 0.4.

Writing

<?o(0 =

mtQ, 0 < t < -m
(58)

the integral occuring in (53) is readily evaluated and found
to be

r<.n(0 =
——4 K^Z - 1 + e-«*,»«] 0 < t < -cti.n m

&i,n4 <Xi,n2 ^

(59)
in which n is taken as 0 or 2.

The stresses (56) and (57) have been evaluated on a CDC
1604 computer for a Poisson's ratio v = 0.3, & = 0.25, 0.5,
0.75, and for m = J, 1, 2, 5, 10, and 100. Ten terms in the
series expression for the stresses (56) were carried which, in
the steady state, gave an error of less than 3.8% on the out-
side surface and negligible (less than 0.25 X 10~2%) error
on the inside surface. The difference in error between the
inside and outside boundary stresses arises because the slowly
convergent terms in the series vanish on the inside radius by

0.60

0.58

0.56

0.54

0.52

0.50 0.1 0.2 0.3 0.4 0.5
v

Fig. 3 Variation of feo with Poisson's ratio v.
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-0.175

15 30 45 60
ANGLE 9 FROM NOSE

75 90

Fig. 4 5-000 at r = 1, k = i, v = 0.3, m = 0.5 for various
times t.

virtue of the form of the temperature expression and of the
particular solution 3>(r,M,£) used. Ten terms in the series
expressions for the stresses (57) were found to give negligible
error on the inside surface in the steady state, but at other
radii the nonzero, slowly convergent terms gave up to 35%
error in aee and o>0. It was found necessary to carry 100
terms in fz(r,t) in order to reduce the error in (Tee and cr^ on
the outside radius to less than 4.3%.

Some representative steady-state distributions are shown
in Figs. 1 and 2. In all cases, the maximum tensile stress
cree occurred on the inside surface r — k and was found to be
numerically greater than the maximum compressive stress
that occurred on the outside surface r = 1. For k greater
than 0.6, these maximum stresses occur at the nose or forward
stagnation point 6 = 0, whereas for k less than 0.5, they occur
at the equator or 6 = ir/2. The value of &o at which the
maximum stress shifts from the equator to the nose is identical
for tension and compression and depends on Poisson's ratio
vt as illustrated in Fig. 3. For the two cases k = J and k = J

0.4 0.6
TIME t

Fig. 5 Transient <T0ec stress at r = 1 and r = k for m = 5
v — 0.3, 0 = 0; £000 designates steady-state value.

Table 3 Components of steady-state free stress on inside
and outside surface; 0 = 0, p = 0.3

a-ee0K
K

Inside surface
i
i

GaQotfoT

9.550
2.653
0.736

(10 terms)

(9.551)
(2.653)
(0.736)

GaQofto-y

-0.187
0.075
0.327

(100 terms)

(-0.187)
(0.075)
(0.327)

Outside surface
i -1.592 (-1.536)

-1.061 (-1.029)
-0.502 (-0.483)

-0.140 (-0.134)
-0.110 (-0.106)
-0.185 (-0.184)

investigated in detail for which k < kQ) this increase in the
stresses from 6 = 0 to 6 = ir/2 is at all times less than 6%
of the stress at 6 = 0. During the transient heating, the
tensile stress on the inside surface is maximum at 6 = ir/2.
The compressive stress on the outside surface, however, is a
maximum at 6 = 0 during the initial heating and changes
to 6 — 7T/2 at a later time. This effect occurs for all heat
rates investigated, and a typical variation is shown in Fig. 4
for the ^-dependent part (cr002) of the 0*00 stress.

The steady-state components of the maximum stresses on
inside and outside surface at 6 = 0 are presented in Table 3,
and the normalized transient values for m — 5 are shown
in Figs. 5 and 6. Numbers in parentheses in Table 3 are
series solutions for the number of terms indicated. It is
observed from Fig. 5 that the <r000 stress on both inside and
outside surfaces lags the instantaneous steady-state value,
and the effect of increasing m is to increase the lag. The
maximum stresses occur in the steady state for this particular
input. This same effect is observed in Fig. 6 for cr002 on the
inside surface, and on the outside surface for k = f. The
0-002 on the outside surface for k = i and |, however, leads
the instantaneous steady-state value and exhibits an over-
shoot. This effect is also observed at 6 = 0 in Fig. 4. The
magnitude of this overshoot depends on m and reaches its
maximum at a time t > 1/ra. An upper bound may be ob-
tained for the ratio of the maximum overshoot to the steady-
state value and for the two cases investigated; an upper

Fig. 6 Transient <7002 stress at r = 1 and r = k for m — 5,
v — 0.3, 0 = 0; £002 designates steady-state value.
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bound is 2.02 for k = f, and 2.17 for k = |. However, for
the range of 7 under construction and for the given transient
input, the total stress cree = &eet + ^002 at no time exceeds its
instantaneous steady-state value.

The curves for k = f in Figs. 5 and 6 also give an indica-
tion of the error involved in neglecting transient effects and
assuming instantaneous steady-state conditions for relatively
thick "thin sections."

Simple expressions may be obtained for the maximum com-
pressive and tensile stresses in thin sections. Designating h
as a dimensionless thickness, i.e.,

h = I - k (60)

and maintaining terms to order h2, the transient terms for a
continuous Q0(t) are of order hs or greater and negligible.
The maximum tensile stress at 6 = 0, r = &, as evaluated
from the corresponding steady-state solution of (56) and
(57), is then given by

0 = 0 l — v
G'aRQhQ0(t)——— ~ ——K

,
(7

,A1v(61)

and the maximum compressive stress at 6 = 0, r = 1 is given
by

0 = 0
(62)

With h = Q.l(k = 0.9), the error in (61) and (62) is less than
3.5% in the steady state for all 7.

As previously stated, the form of the heat input over the
back surface of the sphere cannot be considered physically
valid, and the preceding analysis is restricted to an area
around the nose. The boundary conditions (47) and (48)
present an insulated surface at the equatorial plane 2 = 0,
whereas in actual fact some heat transfer can be expected
to take place across this plane from the forward portion of
the hollow sphere to the rear portion. Also, in applications

to hemispherically capped cylinders and cones capped by a
spherical segment, localized discontinuity stresses may be
present at the junction of the cap and cylinder or cone. The
preceding results, however, should be quite representative
of the actual stresses in the aerodynamically heated thick-
walled sphere or hemisphere in the region 0 < 6 < ir/3.
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Buckling of Cylindrical Shells under Dynamic Loads
J. D. WOOD*
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The results of an exploratory experimental and analytical program on the buckling (collapse)
of thin-walled cylindrical shells under dynamic loads are presented and discussed. Loading
conditions for the cylinders include dead-weight axial compression with axisymmetric transient
and oscillatory hydrostatic pressures. Where possible, the experimental results are qualitatively
verified by linear shell theory. Areas requiring further experimental and theoretical study are
identified.

I. Introduction

IN missile and space vehicle design there is an ever-increas-
ing number of cases in which shell structures are subjected

to dynamic loads. One common loading condition for
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cylindrical shells is a sustained axial compression with
dynamic external lateral loads. Consequently, one might
expect that a condition of structural instability resulting
from lateral dynamic loading could exist for thin shells.
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