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where
Sa = /2)[Mi(1 + bes*/a*) + 2des™/a*1pn
Sp = (n/2)[M,(1 + bes™*/a*) + 2des/a*1qx
Se = —Mn*/4 Sp = —Mn2/4
S = p*u(br* My — du*) + (pa/4) [die® + 4des™ —

Mi(bu* — 2bs™) In®  (53)
Sr = ¢’ (b*My — du®) + (ga/4) [dis* + 4des™ —

My(bn* — 2be™) In?

Se¢ = pa2bu*My — dy®) + (n?/4) (de* — bu*M3)
Sy = .2 (0™ My — dn*) + (n¥/4) (dw* — bu*My)

The D.’s are the Fourier coefficients of the expansion of the
right-hand side of Eq. (47) which will be denoted by K.
Hence,

v . (n v . fny
D, = j; K sm(a—z> dy/l:ﬁ sm2<g,—k> dy:l (54)

In the same manner, the third and subsequent systems of
equations may be solved. The boundary conditions depend
on the solution of the previous system.

After g sufficient number of systems have been solved, the
solution to the complete problem must be reconstituted by
summing the solutions of the individual systems and returning
to the original parameters by means of Eqgs. (8, 9, 13, and 14).

Discussion

A vperturbation method of solution has been applied to
laminated anisotropic shells. By this scheme the effect of
general anisotropy was reduced to orthotropy such that the
solution to an anisotropic shell problem consists of a series
of orthotropic shell solutions. The method was demon-
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strated for the uniform pressurization of laminated cylindrical
shells, Although the method of solution is straightforward,
the amount of algebra involved is quite extensive. There-
fore, it is suggested that this method be used on shell struc-
tures where the general anisotropy is slight. Then a good
approximate solution may be obtained by solving a small
number of systems of equations.

By letting the radius of curvature a tend to infinity through-
out the equations for cylindrical shells, a system of laminated
anisotropic plate equations is obtained. Techniques em-
ployed previously for cylindrical shells are again applicable
for laminated anisotropic plates.
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A Transient Axisymmetric Thermoelastic Problem for the

Hollow Sphere

Wriiriam E. WARREN*
Sandia Laboratory, Albuquerque, N. Mex.

The linear uncoupled quasi-static theory of thermoelasticity has been applied to the elastic
hollow sphere having a prescribed axisymmetric transient heat input on the outside surface,
and a prescribed axisymmetric transient temperature distribution on the inside surface.
Series expressions for the temperature, stress, and displacement fields are obtained in terms
of orthogonal functions. As a particular example of the analysis, the stresses due to aero-
dynamic heating of a hypersonic hollow sphere are investigated in detail, and some repre~
sentative transient and steady-state stress distributions are presented in graphical and tabular

form.

Introduction

HE thermoelastic problem for a sphere has been the
object of numerous investigations in the past, and bib-
liographies of this work may be found in the references.i~?
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Of particular interest to the present investigation is the work
of Trostel,* who obtains quite general solutions for general
transient axisymmetric boundary conditions on the hollow
sphere. The corresponding steady-state problem has been
solved by McDowell and Sternberg,® and a solution for the
transient thermal stresses in a solid sphere has been obtained
by Melan.® The purpose of the present investigation is to
present a detailed analysis of the transient thermal stresses
in a hollow sphere subject to a prescribed axisymmetric
transient heat input on the outside surface, and to a pre-
scribed axisymmetric transient temperature distribution on
the inside surface. The inner and outer surfaces are assumed
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stress-free. These thermal boundary conditions may closely
approximate conditions encountered during aerodynamic
heating.

The analysis assumes an isotropic, homogeneous material
and uses the linear uncoupled quasi-static theory of thermo-
elasticity. A general solution for the stress and displacement
fields is obtained for the transient thermal boundary condi-
tions as just prescribed in terms of orthogonal functions.

A particular example corresponding to aerodynamic heat-
ing of a hypersonic vehicle with a hemispherical or spherical
capped nose is considered in detail, and numerical values for
the maximum stresses are presented in tabular and graphical
form. A second-order approximation for thin sections is also
obtained for this particular example and compared with the
exact results. It is found that, for thick sections where the
ratio of inner radius to outer radius % is less than 0.5, the
maximum stresses occur at points 90° from the nose, or stag-
nation point. For thinner sections with a ratio greater than
0.6, the maximum stresses occur at the nose. The particular
ratio at which this change occurs is identical for the maximum
tensile and compressive stresses and depends upon Poisson’s
ratio. For a Poisson’s ratio of 0.3, the position of the maxi-
mum stress shifts at a value of ¥k = 0.544. Thus, in rela-
tively thick sections, the stresses increase, moving away
from the nose, and failure will probably occur at some point
remote from the nose. In thin sections the stresses decrease,
moving away from the nose, and failure will probably occur
at the nose. Af all times, as expected, the maximum tensile
stress occurs at the inside radius, and the maximum com-
pressive stress occurs at the outside radius. For the par-
ticular time-dependent inputs considered, a steady state is
reached which permits verification of the convergence of
the transient series results. The solution, however, is di-
rectly applicable to the more interesting cases in which the
heat input does not take on a steady-state value.

Basie Equations

In rectangular coordinates z;’ and time #/, the Cartesian
tensor form of the field equations associated with the linear
uncoupled quasi-static theory of thermoelasticity aret

KT,@',' = bT/Dt'
(1 - 2V)1)i',1ck + vlc,,ki = 2(1 + V)OlT,i

24 20 +»)
i = G [W'j + Dj’,i -+ 1— 2 vk"k6ij - m aT&ij]
oy

In Eqs. (1), T is the temperature variation relative to some
ambient temperature; ;' and o represent Cartesian com-
ponents of displacement and stress, respectively; 6. is the
Kronecker delta; and x,e,»,G are material constants rep-
resenting thermal diffusivity, coefficient of thermal expansion,
Poisson’s ratio, and shear modulus, respectively.

Introducing spherical coordinates p,8,¢, as given by the
transformation

21/ = p sinfd cos¢ o' = p sind sing

@' = p cos 2)

Eqgs. (1) are to be solved in the region lying between the

two radii p = R; and p = R, Ri;<R, and subject to the

following boundary conditions: a) prescribed heat input

Q(0,t") on outer radius p = Ry; b) prescribed temperature

T.(6,t'") on inner radius p = R;; c) initial temperature

T(p,8,0) = 0; and d) traction free surfaces at p = R, p = Rs.
With the introduction of the dimensionless ratios

P I P2
¢ R, ¢ Ry Ry
K R;
= — k==
L= Ry Re

t For a derivation of Egs. (1), see, e.g., Ref. 1, Chap. 3.
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Eqs. (1) become

T,ii = aT/bt (3)
1 — 2v)vs e + Ve = 20 + v)aT; 4)
2y 21 + »)
ciy =G I:Ui,j + v;: + —1 — o Vi — _(1 ~ %) (!T&-]-:I
(5)
with the associated transformed boundary conditions

AT _ RO _

o] - TR e (62)

Tl —r = T:(6,1) = h(6,) (6b)

, Tli—o=0 (6¢)

O'rr]r =1,k = 0'r0]r=1,k = 0'r¢]r=1,k =0 (Gd)

where K is the material thermal conductivity.

The analysis proceeds with a solution of the heat equation
(3) subject to (6a—6¢), which gives the temperature dis-
tribution in the hollow sphere. With the temperature dis-
tribution known, a solution to the displacement equation (4)
is obtained as the sum of a particular integral plus the general
solution to the homogeneous form of (4) as given by the
potentials of Boussinesq and Papkovich. The Boussinesq-

~ Papkovich potentials are evaluated with the aid of (5) from

the boundary condition (6d). In all that follows, the axi-
symmetric nature of the problem will be implicit.

Solution of the Heat Equation

The heat equation is solved by considering first the prob-
lem of time-independent boundary conditions and then
applying Duhamel’s theorem to obtain the solution for the
more general time-dependent boundary conditions. In
spherical polar coordinates, the heat equation (3) becomes

12 (0T 12 dT\ _ oT

_ 2" —_ 3 il = —

% or <T or > T 2 sind 20 (Sma ae) o 0
with time-independent boundary conditions and initial
condition

g;q—’:|7=l=q(0) t>0
Tl =& = h(6) t>0
Ter,0lico=10 8)

Writing T as the sum of a steady-state solution 7, and a tran-
sient solution T, a separation of variables gives T, and T, in
the form

T, = i;o [Ayr» + Bur——11P,.(w) Q)

T, = Z=)0 gZ [An,ajnlar) + By ona(ar)] e~ % 2 P ()
10)

In Egs. (9) and (10), u = cosf; P,(u) is the Legendre
polynomial of order n and argument u; A,, By, Ava, Bua, o
are constants to be determined from the boundary condi-
tions; and j.(ar), n.(ar) are spherical Bessel functionsi of
the first and second kind, respectively, of order n and argu-
ment ar.

Expanding g(u) and A(u) from (8) in a series of the or-
thogonal Legendre polynomials in the form

o) = X 0P ) = X RPG) (1)

gives the steady-state temperature in the hollow sphere as

T For properties of these functions, see Ref. 9, Part I, p. 1573
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-5
{h w(k/T)"n 4 (0 Dr*n#t] 4 o[l — (k/r)**1]
[n+ (n+ Dknt]

} (W)
(12)
To satisfy the homogeneous boundary conditions imposed

on T, introduce a linear combination of j,(ar), n.(ar) in the
form

Un(ar) = jo(ak) n.lar) — n.(ak) j.(ar) (13)
and determine the admissible o’s from the condition
Un'(a) =0 (14:)

The U.(ar) defined by (13) and subject to (14) satisfy the
required homogeneous boundary conditions imposed on
Teatr = k'and r = 1. Designating the successive zeros of
U.'(a) by a; ., T:becomes

T, = Z Z C’i,nU,,(ai'nr) Pn(u)e_“i,nzt (15)
n=01i=1
It may be shown from the defining differential equation and
the given boundary conditions that the Un(os.r) form an
orthogonal set over 7 in the interval k¥ < r < 1 such that

fkl Unlati,ar) Un(ay,ar) ridr = {2{’_," ¢ f‘; (16)
where
1l —na+ D], 01 }
Kin = 2{ e S
and

Vn(ai,nr) = jn(ai,nk)nn—l(ai,nr) - nn(ai,nk) jn-1(01~;,u7‘) (18)

Substituting (12) and (15) into the initial condition (8) and
making use of the orthogonality relationship (16) gives

Ve | 9

—1
Ci,n B ai'nKt’.n [ai n + (7"*‘—1)

where use has been made of the following identities readily
established from (14):

’in(ai,nk)nn+l (Oli n)

[1ﬂ(a’b nk)nn—-l(ai n) - nn(az nk)]n~1(az ’&)] (20)

- nn(ai nk)jn+1(ai n) =

(n + i)
(n + 1) Un<a1,',n) = ai,nvn(ai,n) (21)

Equations (12) and (15), with (19), give the temperature
in the hollow sphere as

i

n=0

(/1) 0 4+ (0 A D] + g1 — b/t
[+ (o Dk
e~ %n' U,,(a, aT)

nln

f [a Pa(u)
(22)

For the more general case where %, and ¢, are functions of
time, that is k, = h.(8), g» = ¢.(t), Duhamel’s theorem§ gives

T= i Z Ti."(t)as',nUn(ai,nT)Pn(u) (23)

(n + i D V(e ,.)]

n=0 i
where
_ B ()\) Qn()\) ] g, n2(A —1)
Ti n(t) K,,,. Iiat "2 7 + 1 V ( s, n) d)\

24

§ Application of Duhamel’s theorem is described in Ref. 7,
pp- 30-32.
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Solution of the Displacement Equation

With the temperature distribution in the hollow sphere
determined, as in (23), the solution of the displacement
equation (4) may be written as the sum of a particular
integral v* and a general solution to the associated homog-
eneous problem corresponding to a wuniform temperature
distribution throughout the body which will be designated
v** It may be readily verified that a particular integral is
obtained by taking

2Gv* = VP (25)
and
= [(1 + v/ — »)2GeT (26)
To formalize the solution, set

G J_r V) 2GeT = i fa(rt) Po(u) @7
n=0 )

where (23) gives f,(r,t) in the form
aeo = (112

The particular solution to (26) to be used here is

) 2G(x 21,7'1 n(t) (78 nU (a‘b nr) (28)

d = i H,(r,t) P,(w) (29)

n=0
where
1
2n 4+ 1 X

I:rn fkr £ln £ (g )dE — rnt fkr gt f"(é’t)dg] (30)

The spherical components of displacement and stress arising
from the particular integral and the temperature terms in (5)
may be obtained directly by a transformation from the
Cartesian form with the aid of (26). They are

H.(rt) =

2Gv.* = > H,'(rt) P.(u)
n=0

% _ _ hnd H”(r)t> A 7
2Gu* = EO ; 2 Py’(u)
ot = 3 L) = Fe0) Pal)
0'8(7* = ::_2 i }In(ryt) [u Pn’(u) - n(n + 1) P"(u)] +
n=1

5 [H_T(’“_@ - fn(r,t)] Po(u)

Top™ = i [}ﬁ":—r’_t) "fn(’”,t)] Pu(u) —
5 S Ho(rl) Pu(u)
1

o* = - Z (Ha(r) — rH/ ()] 4 Po'(w) (31)

where H,’ (r,t) = (0/0r)H,(r,t), and 4 = sinf.

Because of the axisymmetric nature of the problem, the
shear stresses oy and ogs are identically zero and subse-
quently will be ignored.

It is well known that for the axisymmetric problems of
elasticity the general solution to the homogeneous form of
the displacement equation (4) may be obtained in terms of
two Boussinesq-Papkovich potentials given, in Cartesian
tensor form, by

2Gv** = ¢ + x,s — 8:(3 — )Y (32)
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where z; is the axis of symmetry and ¢ and ¥ are harmonic
scaler functions. Expressions for displacements and stresses
in spherical coordinates corresponding to (32), suitable for
the present problem, have been obtained by Sternberg,
Eubanks, and Sadowsky,? and only the results will be pre-
sented here. Accordingly, the displacement and stress fields
arising from (32) are

(n+ 1)

2000 = — 3 L2 0P
— 3y O DOEL=D) b
2t = — 3 4 PG

° (n— 3+ 4v)

- -Zw prtl

Dn i P,.+1’(u)

@

o = 3 {nn — )0y 2+

D0+ 2) ot — (4 1) X
[+ 1Dn — 2) — 29] D_por +
n[nin + 3) — 20]D,_y r—2~1} Po(uw)

ot = 5 [Pa@) ~ (o D+ 2) Pu)]
~ % 2t D — 0t
1= 20) Poy(w) — (n — 3 + 4v) P.'(u)]
oge™* = — i ;?—L,Pnﬂ'(u)
-3 2ot - )+ DEn+ VPl +
(n — 3+ 4v) P,/ (u)]
ot = 3 (= — 1) Coua 2+ (n+2) Cur——t +

1
m*+2n — 1+ 20)D_psr +
(n? — 2+ 20) Doy r7771} 4 Po'(u)  (33)

In (33) use has been made of the relationship P,(u) =
P_._y(u). The total stress and displacement fields are then
given by the sum of (31) and (33). The traction free bound-
ary condition (6d) takes on the form

n

O'rr]1=1,k = [U'rr* + a'rr**}r-l.k =0
(34)

Urﬂ]r:-l,k = [0'10* + O'rﬁ**]r=l.k =0

Substitution of (31) and (33) into the boundary condition
(34) gives the following set of simultaneous equations for
determining the C, and D.,:

nn—1D)CLi+ 0+ 1Dn+2)C0C, —

(n + 1)8n Dns + 1Pnys Duy = M, n>0
nn —1)Cny + (n + D(n 4 2)k~1C, —
(n 4+ 1)Bk2D_ns + (nBasok™»T)D,y = 0 n >0
—( = DCony + (0 + 2) Ca 4 SuriDnca +
0o Dpy = N, n>1
—( ~ 1)Cona + (n + 2) k—2—1C, +
Oniak?D_pn o + 6,k D, =0 n>1
(35)
in which
0 =n2—2+ 2 Ba=(+1)n—2) — 2
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M, = fu(1,5) — Ha"(L,1) N. = Ha'(1,t) — Ha(,1%)

and use has been made of the readily established fact that
fallet) — H"Kt) = 0, Halkt) = 0, and H,'(kt) =
Equations (35) constitute a consistent set for determining
all C, and D,, with the exception of C,, C_;, D_;, which cor-
respond to a rigid-body motion of the hollow sphere. For
n = 1, (85) gives four equations in the three variables C},
D_; D,, which are consistent by virtue of the fact that
My/2 = N;. The C, and D, are presented as follows:

(n - 1)An C—n—l =
M.{(n + Do K1 — k%) (6aia + Ba) +
dapr (I — B+ [0fnys — (n + 1)8,]} +
(n' + 1)Nn{ﬁn(]- - k2"+3) [n6n+2 - (n + 1) 61;] -
Bng2 B T(A — k%) (8npa + Bn)} n>2 (36)

n + 2)A.C. = E» M {0,521 — k1) X
[Mntr — (0 + 1)Bu] +
n5n+1(1 — k). + ﬁn+2)} +
nk2”+1Nn{(n + 1)57»(1 - k2)(6n -+ ;Bn+2)’ -
B2 — K ) [nbnpn — (n + 1B} n>0 (37)

ApD_ny = Ma{n(l — B (00 + Burs) —
@n + 1)8,(1 — k=) +
AN {(@2n + DBl — k1) —
(n+ DA — k=) (G, + Baso)}

ADay = — k=M { @n 4+ Dan(l — k) +
k(1 — k) 08 — (0 + DB} —
(n + DEINL{2n + 1)1 — k) —
B — ) by — (n + 1)8a1} n>1 (39

An = n(l — E*»)2(8, + Bugn) [18n1n — (0 + 1)Ba] —
@n + D{o.(1 — kD)1 — k2+8) X
[n0na — (0 + 1)B.] +
k(1 — kD2 8031(8n + Bas2)}  (40)

n>0 (38)

The evaluation of the C, and D, completes the determination
of the stress and displacement fields in the hollow sphere.
To carry out the preceding evaluations, the followmg terms
are necessary along with 7;.(f) and f,,(r,t) as given by (24)
and (28):

_ 1+ 2Ga Ti,n(t)
Hart) = (1 - v) @n+ 1) Z,: PICIRA
[rrk—2"1 — krr—»7t — 2n 4+ D Uaauar)] (41)

, (14w 2G« 7i,()
Ha'(rt) = (1 - v) @2n+ 1) ; ot X

[nrek—=1 4+ (n + Dkmr—1 +
(n+ 1)@2n + Do Unlagr) —
2n + o2 Valou,ar)] (42)

[Ha"(rt) — falr,)] =
Tt 2Ge o "(t) nf—n—1 .
(1 - v) @2n + 1) 2 @it > [n(n — Drk

)

n+ 1)n+ 2)19"7""'1 -
@n+ 1D(n+ D0 4+ 2a:Unlowar) +
2@n + 1) o2 Valosr)] (43)
14+ 2Ga 7i,a (1)
M = (1 — v) @n+1)5 a..,f,z
[n@n + 1) ain? Valain) — nin — 1) k~»"1 4
(n+ D(n+ 2)kr] (44

1+ 2 Ti,n(t) -
N”_<1—v)(2n+1); [("—l)k T

11L

2n + 1)
n4+1

X

(n + 2 + a;,nzv,xa‘-...)] 45)
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Example of Aerodynamic Heating

As an application of the preceding analyses, the thermal
stresses in a hollow sphere due to aerodynamic heating at
hypersonic velocity will be determined. Because the rate
of heat transfer to the body in the turbulent region of flow
is not well defined, the analysis is assumed applicable only in
the forward portion of the sphere where the flow is laminar.
The analysis thus provides an approximate solution for an
unyawed hemisphere or an unyawed cone capped by a spheri-
cal segment. Lees!® has obtained analytic expressions for
the local heat-transfer rates for an unyawed hemisphere at
hypersonic flight speeds, and his results are closely approxi-
mated over the forward half of the sphere by

Qtw) = QO [yPo(w) + (1 — VIP(u)] (46)

where Q(t,u) is the local heat-transfer rate, Qo(t) is the nose
stagnation point heat-transfer rate, and v is a parameter
determined by flight speed (0.39 < v < 0.52). The form
of the heat input (46) cannot be assumed physically valid
over the region 7/2 < # < w. The theoretical results of
Lees have been verified experimentally by Bloxsom and
Rhodes,!! and theoretical and experimental values of the
stagnation-point heat-transfer rates Qo(f) have been obtained
by Ferri and Zakhay.'? Table 1 gives values of v for various
Mach numbers, as approximated from the curves of Lees,?
s0 as to maintain the same total heat-transfer rate into the
front portion of the sphere.

If the temperature on the inside surface is assumed uni-
form, the steady-state effect is to raise the temperature of the
entire hollow sphere by this uniform amount, which creates
no stress field. The only contribution, then, to the stress
field for a uniform temperature change on the inside surface
will be due to transient effects. It will be assumed here
that temperature changes on the inside surface are suffi-
ciently slow so that the stress field is independent of this
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Table 1 Values of v

Mach number 2 3 5 10 ©

v 0.52 0.46 0.42 0.40 0.39
where
Us(aior) = pCETX

{ [9Q 4+ oue¥rk) — 3o 2(r? + k) + o or?k?] sino o (r — k)
——3015’2(7' - k)(?) + ai,22rk) COSOdi,g(T - ]{}) }
(B
Vz(a,;gr) =
1 { [3 + 30{5,22](}1" — a;,22k2] sinam(r - ]ﬂ) -
055,257‘2]63 OL;’J[?)(T - k) - a;,zzkgr] COSOL,',Q(T - k) } (52)

T () = ﬁ) L Qo(\)eim =D g\

and a;,, oy are nonzero roots of the transcendental equa-
tions:

n =102 (53)

;i = tanog (1 ~ k) (54)

diploi ok + 91 — k)3 + ai®k) — 3 2(1 — k)]
[4aio%? — 3o o — 120,92 — e %2 + 271 + i 2%)]
tana;,g(l - ]C) (55)

Table 2 gives the first six .4, a2 to four decimal places
for three values of k.

The stress field arising from the boundary heat input
¢e(t) is independent of the argument « and may be obtained
from (31) and (33) with the use of Cy, D_s, fo(r,t), Ho(rt),
H'(@,0), [Hy(rt) — folr,t)], and M, Evaluating these
terms from Eqs. (28, 37, 38, and 41-44) with the aid of
(24, 40, 49, and 53) gives

_ _ {1+ 8GaRy ‘ o {aiok[(l — /0 — k3] + sinauolr — k) — ouor cosau,e(r — &)}

T = (1 — p> ko ; Tio() sinag o1 — k) { [l — ) — sinfoo(l — B)] }
1 4G R, .

Cop. = Tpa, = <TJ_F—Z> e Z Tio(t) sina o1 — k) X

{{ai_ok[(27‘3 + /0 — k)] + A — cuo¥?) sinagolr — k) — aior cosaue(r — &)}

temperature, and the temperature will then be taken, with
no loss in generality, as zero. In applications where the in-
side surface temperature is known to be nonuniform or chang-
ing rapidly, a solution for the stress field with this known
temperature distribution on the inside surface and zero heat
input on the outside surface may be obtained and super-
imposed onto the stress fields presently to be obtained.
The boundary conditions (6a) and (6b) give

qut) = [ReQe(t)/K1[vPs(w) + (I — v)P:()]  (47)

h(ut) =0 (48)
and the nonzero q,,h, of (11) are
a(t) = RoQ;{(t)’Y q2'(t) — RoQo(t)I({l -7 (49)

Evaluating (23) and (24) with (49) gives the temperature
distribution:

_ 2Ryy
T=2" Z Tio(®) X

{Oti'oz Sindl,g(l - ’6) sinai,o(r — k)
[@ — E)aue? — sinayo{l — k)]

6kR,(1 — %)
—r Z; Tio(® X

{ Oé1,25V2(Ol1,2) Uz(ai,27')

P +

[ k(o 2 — 6) V(o) — 9]} Piw) G0

[o,62(1 — k) — sinZau ol — k)] }

o, = 0 (56)
where the subscript zero designates stresses from ¢o(f). The
stresses (56) are in agreement with the results obtained by
Boley and Weiner [Ref. 1, p. 301, Eq. (9.14.4)] for the sym-
metric thermal stresses in a hollow sphere.

The stress field arising from ¢»(f) is obtained from (31) and
(33) in the form

Gy = {20_3 + }‘3 Cy + 6vr*D_ +

‘E@T:Q D, + HyY(rt) — fa(r»ﬂ} Py(u)

Table 2 Values of the first six «; g, @; 2 for three values of k

k 0.25 0.5 0.75
a1,0 1.1263 2.3311 5.5730
o) 6.0653 9.2084 18.6351
a0 10.3435 15.5798 31.2881
Q4,0 14.5694 21.8999 43.8912

U o 18.7786 28.2034 56.4779
oG, 22.9804 34.4996 69.0571

o2 3.3579 3.7176 6.1711
aze 7.5235 9.8165 18.8461°

as,2 11.3753 15.9555 31.4152

sz 15.3463 22.1705 43.9820

o5.2 19.3960 28.4146 56.5485
34.6726 69.1150

ag,2 23.4909
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DISTANCE THROUGH THICKNESS h MEASURED
FROM [INSIDE SURFACE

Fig.1 Steady-state stress distribution through thickness
hfor8 = 0,» = 0.3, vy = 04.

G = {—C_a +2 04+ @+ rpo+
(1+v) me)—ngmn}
7'2

D, + APy’ (u)

oo, = %Hz(r,t)(l — 2u?) +

1_., _ Buz —1)
(Lo - e | #5572 4

3C’2

C@2 -3+, 38— Tu) — % 1 —-2n1 4+ 3u?) +

3D_2[7(2 + vIu? — (7 + »)}

— §2—H2(7*,t)142 +
7

[l Hy'(rt) — fz(T,t)] @WT_D _

Cot 280 - — 2 a - 2w — ) +

3D_a2{(7 4+ 11v)u? — 5v] (57)

where the subscript 2 represents stresses arising from g¢(f).
The stresses in (57) may be explicitly represented with the
use of (28 and 36-45) but will not be presented here.

In order to obtain numerical results, the stagnation point
heat input Qo(t) was assumed to increase linearly from zero
to a maximum @, and remain constant at Qo thereafter.
While being representative of a particular physical situation
of interest, this form of heat input also has the advantage of
producing a steady-state solution from which convergence
of the series solution may be investigated. The steady-
state solution may be obtained by using the temperature dis-
tribution (12) rather than (23) in the solution of the displace-
ment equation with the nonzero ¢, and k., still given by (49).
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Fig. 2 Steady-state dggand d¢patr = landr = Ekfor k =
%, tandr = 0.3,y = 0.4.

Writing
miQy ogt;g%
Qt) = | . (58)
Qo t>—
m

the integral occuring in (53) is readﬂy evaluated and found
to be

o a2 [ai.nzt -1 ’I‘ e_“i,n”] 0 S t _<_ ;—:;

Tin® =Qof " . )
4 a- eai'"z/m)e—ai'”% =+ 2 t > —

Oin 7,0 m

(59)

in which n is taken as 0 or 2.

The stresses (56) and (57) have been evaluated on a CDC
1604 computer for a Poisson’s ratio » = 0.3, &k = 0.25, 0.5,
0.75, and for m = 4, 1, 2, 5, 10, and 100, Ten terms in the
series expression for the stresses (56) were carried which, in
the steady state, gave an error of less than 3.8%, on the out-
side surface and negligible (less than 0.25 X 10729) error
on the inside surface. The difference in error between the
inside and outside boundary stresses arises because the slowly
convergent terms in the series vanish on the inside radius by

0.60

0.58

0.56

k,, N
0.54 \\\\

0.50

(o] 0.t 0.2 0.3 0.4 0.5
v

Fig. 3 Variation of ko with Poisson’s ratio ».
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Fig. 4 Gepatr =1, k = %, » = 0.3, m = 0.5 for various
times t.

virtue of the form of the temperature expression and of the
particular solution ®(r,u,f) used. Ten terms in the series
expressions for the stresses (57) were found to give negligible
error on the inside surface in the steady state, but at other
radii the nonzero, slowly convergent terms gave up to 359,
error in og and oge. It was found necessary to carry 100
terms in fo(r,t) in order to reduce the error in o and o4y o0
the outside radius to less than 4.39%,.

Some representative steady-state distributions are shown
in Figs. 1 and 2. In all cases, the maximum tensile stress
ogg occurred on the inside surface r = & and was found to be
numerically greater than the maximum compressive stress
that occurred on the outside surface r = 1. For k greater
than 0.6, these maximum stresses occur at the nose or forward
stagnation point § = 0, whereas for k less than 0.5, they occur
at the equator or § = w/2. The value of k; at which the
maximum stress shifts from the equator to the nose is identical
for tension and compression and depends on Poisson’s ratio
», as illustrated in Fig. 3. Forthe twocasesk = fandk = }

0.8
3
&
Q 0.6
=3
-4
]
u 04
o
=
40

0.2

0 0.2 0.4 0.6 0.8 1.0
TIME t

Fig. 5 Transient ogg, stress at r = Land r = kform =5
v = 0.3, 0 = 0; 8, designates steady-state value.
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Table 3 Components of steady-state 8¢5 stress on inside
and outside surface; 6§ = 0, » = 0.3

300, K G09,K
K Ga@aRoy (10 terms) Go@—on (100 terms)

Inside surface

i 9.550 (9.551) —0.187 (—0.187)

3 2.653 (2.653) 0.075 (0.075)

2 0.736 (0.736) 0.327 (0.327)
Qutside surface

i —1.5902 (—1.536) —0.140 (—0.134)

3 —1.061 (—1.029) —0.110 (-—0.106)

: —0.502 (—0.483) —0.185 (~0.184)

investigated in detail for which k < ko, this increase in the
stresses from 8 = 0 to 8 = 7/2 is at all times less than 69
of the stress at § = 0. During the transient heating, the
tensile stress on the inside surface is maximum at 8 = /2.
The compressive stress on the outside surface, however, is a
maximum at # = 0 during the initial heating and changes
to 8 = w/2 at a later time. This effect occurs for all heat
rates investigated, and a typical variation is shown in Fig. 4
for the §-dependent part (s, of the oo stress.

The steady-state components of the maximum stresses on
inside and outside surface at = 0 are presented in Table 3,
and the normalized transient values for m = 5 are shown
in Figs. 5 and 6. Numbers in parentheses in Table 3 are
series solutions for the number of terms indicated. It is
observed from Fig. 5 that the ogg, stress on both inside and
outside surfaces lags the instantaneous steady-state value,
and the effect of increasing m is to increase the lag. The
maximum stresses oceur in the steady state for this particular
input. This same effect is observed in Fig. 6 for ogs, on the
inside surface, and on the outside surface for & = . The
oagz on the outside surface for & = % and %, however, leads
the instantaneous steady-state value and exhibits an over-
shoot. This effect is also observed at § = 0 in Fig. 4. The
magnitude of this overshoot depends on m and reaches its
maximum at a time ¢ > 1/m. An upper bound may be ob-
tained for the ratio of the maximum overshoot to the steady-
state value and for the two cases investigated; an upper

1.€

o
®

k=172

o
)

STRESS RATIO oy, o

T
|
NS

o.2—l—/—»

0.2 53 0.4 0.5
TIME t

Fig. 6 Transient ogpp, stressatr = Landr = kfor m = 35,
v = 0.3,0 = 03 g9, designates steady-state value.
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bound is 2.02 for k = 1, and 2.17 for £ = 3. However, for
the range of v under construction and for the given transient
input, the total stress ogs = 0se + o0z at no time exceeds its
instantaneous steady-state value.

The curves for £ = £ in Figs. 5 and 6 also give an indica-
tion of the error involved in neglecting transient effects and
assuming instantaneous steady-state conditions for relatively
thick “thin sections.”

Simple expressions may be obtained for the maximum com-
pressive and tensile stresses in thin sections. Designating &
as a dimensionless thickness, i.e.,

h=1—kF% (60)
and maintaining terms to order A% the transient terms for a
continuous @,(t) are of order A3 or greater and negligible.
The maximum tensile stress at 6 = 0, r = %, as evaluated
from the corresponding steady-state solution of (56) and
(57), is then given by

(=)

and the maximum compressive stress at 6 = 0,7 = 1is given
GaRhQs(t)

by
=)
1—vw K
With A = 0.1 (k = 0.9), the error in (61) and (62) is less than
3.59%, in the steady state for all v.

As previously stated, the form of the heat input over the
back surface of the sphere cannot be considered physically
valid, and the preceding analysis is restricted to an area
around the nose. The boundary conditions (47) and (48)
present an insulated surface at the equatorial plane z = 0,
whereas in actual fact some heat transfer can be expected
to take place across this plane from the forward portion of
the hollow sphere to the rear portion. Also, in applications

G wRohQo(t)
K

1+ (v + 3kl (6D

0'00]7‘=Ic =
=0

oo lr=1 1 — @ —27r] (62)

=0
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to hemispherically capped cylinders and cones capped by a
spherical segment, localized discontinuity stresses may be
present at the junction of the cap and cylinder or cone. The
preceding results, however, should be quite representative
of the actual stresses in the aerodynamically heated thick-
walled sphere or hemisphere in the region 0 < ¢ < 7/3.
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Buckling of Cylindrical Shells under Dynamic Loads

J. D. Woop*
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Space Technology Laboratories Inc., Redondo Beach, Calif.

The results of an exploratory experimental and analytical program on the buckling (collapse)

of thin-walled cylindrical shells under dynamic loads are presented and discussed.

Loading

conditions for the cylindersinclude dead-weight axial compression with axisymmetrie transient
and oscillatory hydrostatic pressures. Where possible, the experimental results are qualitatively

verified by linear shell theory.
identified.

I. Introduction

N missile and space vehicle design there is an ever-increas-
ing number of cases in which shell structures are subjected
to dynamic loads. One common loading condition for
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Areas requiring further experimental and theoretical study are

cylindrical shells is a sustained axial compression with
dynamic external lateral loads. Consequently, one might
expect that a condition of structural instability resulting
from lateral dynamie loading could exist for thin shells.
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